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A Model for Creeping Flow in Landslides

by W. Z. Savage and A. F. Chleborad

Introduction

Models of slow, steady creeping flow in landslides have been presented by 

Ter-Stepanian (1963) and Yen (1969). Both authors modeled the creeping flow 

by considering the flow under gravity of a Bingham or viscoplastic substance 

on an infinitely long slope.

A similar model will be considered in what follows. However, instead of 

the two-dimensional Coulomb failure criterion used by Ter-Stepanian (1963) and 

Yen (1969) the three-dimensional generalization of this criterion (Drucker and 

Prager, 1952) will be invoked. This leads to the definition of a Bingham 

substance similar to that given by Olszak and Perzyna (1966).

The creeping flow being considered here occurs at depth in a nearly 

planar landslide in response to gravity, in contrast to the more localized 

surface creep that occurs in response to such factors as freezing and thawing 

cycles. The model developed here will be applied to the case histories 

described by Ter-Stepanian (1963) and Yen (1969) and to Chleborad's (1980) 

field results.



Bingham Substance

A Bingham substance has the property that below a certain stress  called 

the yield stress  it behaves elastically. Above the yield stress it behaves 

viscoplastically. Specifically, we have the constitutive equations;

a... 1 = Zue.j 1 when \ a. ..'a... 1 ^Ck-aJj] 2 , (1) 

a... 1 = Zne^-' when 1/2 a^.'a^.' >[k-aJj 2 , (2) 

where n is the nonlinear viscosity

n-m+Ck-oJjjae^'e^T^ (3) 

The constant p is the elastic shear modulus and m is the viscosity. Primes

indicate deviatoric stresses and strains, and e.. 1 indicates deviatoric strain' j
rates. The product 1/2 a. . 'a. .' is the second invariant of the stress1J 1J
deviation. The strains are defined by e. . = V? ETT~ + ~^r1 where u,- represents

1J oX. 0X. '

particle displacements.
8V, 8v, 

The strain rates are given by e.. = V? DTT- + ~^r^ where v,- are the
1J o X . dX. ' 

J '
particle velocities. The constants k and a are positive at each point in the 

material, and J = a-j-j is the first invariant of the stress tensor. The 

constants k and a are related to the cohesion c and the angle of internal 

friction <j> determined from tri axial tests by a =    ̂-^   and by
,. 

k = _bc COS(t> ( see Corp and others, 1975).



Equations 1 and 2 are the same as those given by Oldroyd (1947) for a 

Bingham substance, except that the pressure-dependent yield function defined 

by Drucker and Prager (1952) is included here, that is, we include aJ in the 

definition of yielding.

As a special case, consider simple shear when all shear stresses except

°i2 =a2i vanlsn « F°r no confining pressure we have a 11 =a22 =a33 =a i3 =a23 =^ anc*

equations 1 and 2 become
2 2 

a 12 <k , (4)

2 
k a12 >k, (5)

These relations are shown graphically in figure 1. For a 12 < k the body 

behaves elastically, that is, the shear strain rate e 12 vanishes. For a 12 2.k 

the body behaves viscously and the relation between a and e is given by 

equation 5. We see that this relation is the same as that in a Newtonian 

viscous body except that the shear stress is greater by k. Thus, k is the 

yield stress in simple shear under zero confining pressure.



12

increased confining pressure

zero confining pressure

12

figure 1.--Behavior of a Bingham body in simple shear,



Now consider the case when a confining pressure a =a =a =-a is 

superposed on the state of pure shear. Relations 4 and 5 become

8U1 2 2
a l2 = M - wnen ai2 < ^k + 3aa] , (6)

Vi 2 2
a i2 = ^i ~^7~ + k + 3aa when a12 >[k + 3aa] , (7) 

An increase in confining pressure leads to an increase in yield strength of 

the body. For a given confining pressure the stress-strain rate relation is 

shown as a dashed line in figure 1.

Returning to equations 1 through 3, clearly these represent a three- 

dimensional generalization of equations 6 and 7.



Any post-yielding flow of the Bingham substance must satisfy continuity
3V,

and equilibrium. From equation 2; a.. 1 = 2n -r-~- , but the first invariant of
1 I a X .

av. 
the stress deviator, a.. 1 =0, and thus -   = 0. The equation of continuity

II a X  

is then
av,

and the flow is that of an incompressible medium. The equilibrium equation is

av,.

Substituting equation 2 into 9 and taking account of equation 8 leads to the 

nonlinear Navier-Stokes equation

2
v

vj

i 2
which applies when ^^a.-'a.. 1 >[k-a J : ]i j i j ~



A Landslide Model

Any landslide model should consider the constitutive equation of the 

material making up the slide, the slope geometry, and the effect of pore 

pressure. In this model we consider the landslide to be an infinitely long 

sheet of Bingham material of thickness h flowing steadily under gravity down a 

slope of 9°. The configuration is shown in figure 2.

Under these conditions, the downslope velocity v the shear stress a , 

and the normal stress a22 are functions of x2 only and all other stresses and 

displacements vanish. The equilibrium equation (equation 9) becomes 

8a 12
8X 2 + pgsine = 0 , (11)

8 (Jo p ^

___ - ^ - pgcose - 0 . (12) 

where p is the pore pressure, p is dry soil density, and g is gravitational 

acceleration.

Integrating equations 11 and 12 we have,

<*i2 = P9(x 2-h) sine + G S , (13) 

a22 = -pg(x 2-h)cose + p - C , (14) 

where C s and C n represent shear and normal tractions due to a surcharge, and 

P= Pw9[hn-X2]cos9 with hp, the piezometric level and p w , water density.



Figure 2.--Infinite sheet of Bingham material under gravity



Because v l is a function of x2 only, constitutive equation 2 reduces to 

°12 = ^1 a v "*" k -3aa22 > (15) 

Substituting equations 13 and 14 into 15 we have

^i T7~ = pg[h-x 2 ]sine + C - k + 3a[pg(x2 -h)cose + p - C ] , (16) dx2 s n

which describes the velocity gradient in the flow.

When a 12 = k + 3aa, that is, the material is on the point of yielding,

we see from equation 15 that the velocity gradient -r-  vanishes. This 

occurs, as can be seen from equation 16, at a height given by

* pghsine + 3ag(p h - ph)cose - 3aC + C - k 
Y _ ________w P ________n s
X2 "pgsine + 3ag(p - P)cose'

Equation 17 (subtracted from h) defines the depth of a "rigid" plug. For 

x *<x j<h the shear strain rate vanishes and the material behaves 

elastically. Because the elastic strains in the plug are small relative to 

strains in the underlying viscoplastic material, we can say that the overlying 

material is rigid, that is, y, the shear modulus in equation 1 is taken to be 

infinite.



Equation 16 is next integrated to give the distribution of velocity in 

the viscoplastic layer extending from x2=0 to x2=x£*. At x2=0, v^O, and 

thus, 2
X2 X 2

Vi=[3a(p-p )gcose-pgsine}«  +[pghsine+3ag[p h -ph]cose-3aC +C -k]  (18) w CT\-^ w p n s T\ i

This reaches a maximum at the boundary with the rigid plug at x2=x2 *» This 

maximum velocity v * is given by,

,2
*

Vi =

[pghsine + 3ag(p h -phjcose - 3aC n + C -k] 

2niLpgsine + 3ag(pw- P JcoseJ
(19).

For X2 *<x2_<h the rigid plug moves with the velocity v x *. Note that by using

the definitions of x2* and V L * in equation 18 the distribution of velocity in

the viscoplastic layer may be written as,

*
2x2 -x2

v i = V!*E  *2 ]x2 , for 0<x2 <x 2 * (20). 
x2

Equation 20 shown in figure 3 for various values of x * describes a parabolic 

velocity distribution with a maximum equal to v x * at x£=x2 *.

10
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Equations 17 through 20 represent the spectrum of velocity distributions

from no flow when k=pghsine+3ag(pwh n -ph)cose-3aC +C giving x *=0 to purely
K n s z

viscous flow when k and a are zero. The maximum velocity (at x =h) is
2 .

* * ph s1nev 1 =[ P ghsine+C ] /2mpgsine or Vi= p ( wnen c SQ) in this last b L.T\ -^ s
case. In general, an increase in the slope angle o, the thickness h, the

piezometric level h Dj or the shear traction C , or a decrease in k, a, orK s
normal traction C , results in a smaller rigid plug (equation 19) and 

n
consequently a greater flow velocity (equation 19). However, an increase in 

viscosity (equation 19) results in a lower flow velocity for any plug 

thickness.

In effect, equation 17 can be considered a stability criterion. For 

example, if one finds that x *_<0 then the zone of viscoplastic flow will 

vanish and no depth creep will occur. This, of course, does not preclude 

surface creep which is not considered in this analysis.

Finally, the model presented here is in many respects similar to those of 

Ter-Stepanian (1963) and Yen (1969). However, it has the advantage of both 

generality (by being derived from a three-dimensional constitutive law with 

explicit inclusion of the effects of pore pressure) and mathematical 

simplicity.

12



Applications

The model for depth creep developed above is now applied to the examples 

described by Ter-Stepanian (1965), Yen (1969), and Chleborad (1980). This 

application will be followed by a brief discussion in which the results will 

be compared and recommendations for future applications of the theory will be 

made.

Displacements measured in a creep well in a landslide on the Black Sea 

coast of the Caucasus (Ter-Stepanian, 1965) are shown in figure 4. Velocities 

inferred from the displacements that occurred over a period of 4.9X10 7 s are 

shown as a solid line in figure 5. Ter-Stepanian takes the height of the zone 

of creeping flow, x2 *, to be 2.10 m, the height of the piezometric level is 

1.5 m, and the slide thickness, h, is 3.5 m. The slide occurs in a weathered 

gray argillite on a slope of 23°. The argillite has an angle of internal 

friction, 4>=21.17°, a dry density estimated to be 1700 kg/m3 , and a residual 

cohesion taken to be zero (Yen, 1969). With these values, the predicted 

height of the rigid plug (equation 17) is 2.1 m and the predicted maximum 

velocity, v^, (equation 19) is 3.1X10" 9 m/s if the Bingham viscosity, n js is 

assumed to be 2.78X10 12 Ns/m2 . Note that this viscosity differs from Ter- 

Stepanian' s theoretical estimate of 1.29X10 12 Ns/m2 derived from his equation 

for depth creep. Finally, the velocity profile predicted by equation 20 after 

inserting the results from equations 17 and 19 is shown as a dotted line in 

figure 5.

13
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Figure 4.--Creep-deformation profile for landslide slopes of the Black Sea 
coast of the Caucasus (Ter-Stepanian, 1965). The distance from 
Q 1 to M : is taken by Ter-Stepanian (1965) as the "rigid plug" and 
the distance P : to M J represents a zone of localized surface creep,
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Figure 5.--Comparison between the velocity profile inferred from displacements measured below 
the zone of surface creep for a slide on the Caucasus Coast of the Black Sea (Ter- 
Stepanian,1965) and the velocity profile predicted by equations 17 through 20.
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Velocities inferred for a slope undergoing creep deformation for a period 

of 1.89X107 s in coastal southern California (Gould, 1960; Yen, 1969) are 

compared with those predicted by equations 17 through 20 in figure 6. The 

creep occurs in a silty clay shale that has a residual angle of friction of 

11°-12° and a residual cohesion estimated to be 1.5X10^ N/m2 (Gould, 1960; 

Yen, 1969). The dry density is 1442 kg/m3 (Yen, 1969) and the material is 

creeping on a slope of 13°. Also h=10 m, hp=8.4 m and the observed height of 

the zone of creeping flow x * is 1.52 m. If the above values are used in 

equation 17, the predicted value for x2 * is 1.52 and if a viscosity of 

5.37X10 11 Ns/m2 is assumed in equation 19, the observed value for the maximum 

velocity, 4.95X10" 9 m/s, is obtained.

Figure 7 shows a cross section of a shallow landslide near Sheridan, Wyo. 

(Chleborad, 1980), which we will refer to as the Springer Ranch landslide. 

Also in figure 7 is an inset showing the location of inclinometer holes for 

which the cumulative displacements are shown in figures 8 through 12. Figures 

13 through 17 show the velocities inferred from the inclinometer data (for a 

period of 5X10 7 s) as solid lines and the velocities in the zone of deep creep 

predicted by equations 17 through 20 for each station.

16



CV
J 

] 
X
 

'

-T
he
or
y

-O
bs

er
ve

d

q 
v 

in
 
10
" 

m/
s

Fi
gu
re
 
6.

--
Co

mp
ar

is
on

 
be
tw
ee
n 

th
e 

ve
lo
ci
ty
 
pr
of
il
e 

in
fe

rr
ed

 
fr
om
 d

is
pl
ac
em
en
ts
 

me
as
ur
ed
 
in

 a
 
sl
id
e 

on
 
th

e 
So
ut
he
rn
 
Ca

li
fo

rn
ia

 c
oa
st

 
(Y

en
, 

19
69
) 

an
d 

th
e 

ve
lo

ci
ty

 p
ro
fi
le
 p

re
di

ct
ed

 
by

 e
qu
at
io
ns
 
17
 
th
ro
ug
h 

20
.



0
0

 
--

» s_
 

<u

25

 
 
 
 i
nf
er
re
d 

fa
il

ur
e 

\v
 

su
rf

ac
e

N\
 s

he
ar

 
su
rf
ac
e 

wi
th
 

ar
ro

w 
in

di
ca

ti
ng

 
di
re
ct
io
n 

of
 

mo
ve
me
nt

m
ai

n 
sc

a
rp

A

la
nd

sl
id

 
pe
ri
me
te
r

0 
20
 
40

 m
et

er
s

I
l
l
l
l
l
l
l
l
l
l
l
f
l

0
5 

10
 

15
 

20
 

25
 

30
 

35
 

40
 

45
 

50
 

55
 

60
 

65
 

70
 

7!

F
ig

u
re

 
7

.-
-L

a
n

d
s
!i
d

e
 

D
ri
ll
h

o
le

 
il
lu

s
tr

a
ti
o

n
. 

h
o

le
s.

ho
ri
zo
nt
al
 
di
st
an
ce
 
(m
)

cr
os

s 
se
ct
io
n 

sh
ow

in
g 

in
fe

rr
ed

 
fa

il
ur

e 
su

rf
ac

e 
an

d 
sh

ea
r 

su
rf
ac
es
,

di
am
et
er
s 

on
 
th

e 
pl

an
 
vi

ew
 a

re
 
ex
ag
ge
ra
te
d 

fo
r 

th
e 

pu
rp
os
e 

of
In

se
t 

sh
ow

s 
li
ne
 
of

 
se

ct
io

n 
A 

- 
A'
 
an
d 

lo
ca
ti
on
 
of

 
in

cl
in

om
et

er



4-15-77
5-19-77
6-23-77 4-4-78

o.
QJ

1 2 
horizontal displacement (cm)

Figure 8.--Cumulative displacement-depth profiles for the center-head 
inclinometer hole (CHI).

19



VDr*-.
i

o r

i -

2 -

3 -

0. 
O) 
TD

4 -

1

3
1
4

horizontal displacement (cm)

Figure 9.--Cumulative displacement-depth profiles for the north-flank 
inclinometer hole (NFI).
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Figure 10. Cumulative displacement-depth profiles for the center-middle 
inclinometer hole (CMI).
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Figure 13.--Measured velocity profile versus theoretical velocity profile for the center- 
head inclinometer (CHI), Springer Ranch Landslide.
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Figure 14.--Measured velocity profile versus theoretical velocity profile for the north- 
flank inclinometer (NFI), Springer Ranch Landslide.
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Figure 15.---Measured velocity profile versus theoretical velocity profile for the center- 
middle inclinometer (CMI), Springer Ranch Landslide.
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Figure 16. Measured velocity profile versus theoretical velocity profile
for the south-flank inclinometer (SFI), Springer Ranch Landslide
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Figure 17.--Measured velocity profile versus theoretical velocity profile for the center- 
foot inclinometer (CFI), Springer Ranch Landslide.
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In each inclinometer hole, the depth creep occurs in silty clay that is 

assumed to have the strength properties measured on core from the center-head 

inclinometer. These properties are an angle of internal friction of 15°, a 

cohesion of 8X102 N/m2 , and a dry density of 1900 kg/m3 . The strength 

properties are based on consolidated drained direct shear tests on undisturbed 

weathered clay similar to that found in the zone of depth creep in the 

landslide. Also, for purposes of analysis the slope is taken to be an average 

of 10°. Finally, the piezometric level in each case is taken to be near the 

depth of the slide, an average of the observed levels.

For the center-head inclinometer (CHI, figs. 8 and 13) the slide 

thickness, h, is 4.85 m and h is taken to be 4 m. If these and the above 

values are substituted in equation 17, we arrive at the observed value of 1 m 

for x2 *, and if a viscosity of 2.55X10 12 Ns/m2 is assumed in equation 19, we 

have the observed average "plug" velocity of 2.2X10~ 10 m/s. The velocity 

distribution predicted by equation 20 is shown as a dotted line in figure 13.

The displacements and velocity distribution for the north-flank 

inclinometer (NFI) are shown in figures 9 and 14. The slide thickness is 

4.8 m and h D is taken to be 4 m. Substituting these and the values given 

above in equation 17, we find the predicted x * to be 1.27 m. The observed 

maximum velocity of 4.6X10" 10 m/s is found if the Bingham viscosity here is 

1.46X10 12 Ns/m2 . The velocity predicted by equation 20 is again given by a 

dotted line.

29



Displacements and velocities for the center-middle inclinometer (CMI) are 

shown in figures 10 and 15. The slide thickness here is 2.9 m and h p is 

assumed to be 2.6 m. Equation 17 predicts that x *=i m, and equation 19 gives 

the maximum velocity, Vj*, of 4X10" 10 m/s. The small differences between the 

observed and predicted velocity distributions (fig. 15) may be due to the 

presence of a step in the bottom topography of the slide near this 

inclinometer hole or due to the effect of inclinometer casing stiffness (see 

below).

Figures 11 and 16 show the displacement and velocity distributions for

the south-flank inclinometer (SFI). The slide thickness here is 3.8 m and h p 

is assumed to be 3.3 m. Equation 17 predicts that x * is 1.26 m, and equation 

19 gives the maximum velocity of 3.0X10" 10 m/s. Equation 20 (dotted line in 

fig. 16) gives a good fit to the velocities inferred from the displacements 

(fig. 11).

Figures 12 and 17 show the displacements and velocities for the center- 

foot inclinometer (CFI). Here the slide thickness is taken to be 5 m, and h p 

is 4.0 m, which is close to observed piezometric levels. Equation 17 predicts 

that x * is 1.8 m, and the predicted maximum velocity, YJ*, is (equation 20) 

4X10" 10 m/s. Differences between the observed (solid line in fig. 17) and 

predicted (dotted line) velocity distributions appear to be due to the fact 

that the inclinometer data here are probably affected by casing stiffness and 

do not clearly indicate where the bottom of the slide occurs (see below).

30



The effect of casing stiffness can be seen by considering the deformation 

of an elastic member under the conditions shown in figure 18a. The resulting 

displacement profile (obtained by solving the "beam" equation
4

-^= 0TfiF u
subject to the boundary conditions shown in figure 18a) is

u = U Q [3(|) 2-2(|) 3 ] (21). 

Equation 21 is plotted in figure 18b.

The effect of casing stiffness can be seen in figures 8 through 11 where 

bowing and negative displacements occur below the lower limit of creep 

movement. In figures 14, 15, and 17, differences between the observed and 

predicted velocity profiles can probably be accounted for by the stiffness of 

the casing.
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Figure 18a and 18b.--Deformation of an elastic member of length "a" under conditions
of no rotation and applied displacements of u=0 and U=UQ at the 
ends.

32



Discussion

A number of points are worth reiteration here. We have seen in each case 

that the velocity within the zone of depth creep is parabolic and, aside from 

the effects of casing stiffness, reasonably well predicted by the theoretical 

results (equation 20). The thickness of zone of depth creep, x * can be 

found (equation 17) from quantities measured in the laboratory; dry density, 

p, and the strength parameters, a and k, and in the field; the total slide 

thickness, h, the slope angle, e, the piezometric level, h p , and the surcharge 

tractions Cn and Cs .

The Bingham viscosity, n is more difficult to measure independently. 

However, because its only effect is on the magnitude of the velocity 

(equations 18 and 19), it can be easily "back calculated" (as was done above) 

provided field data is available.

It is interesting to compare viscosities computed in this way with the 

viscosity values for clays from various sources compiled by Yen (1969). The 

average of these values, 1.30X10 12 Ns/m2 , is somewhat lower than the average 

viscosities computed for the Springer Ranch slide, 2.14X10 12 Ns/m2 . However, 

the Springer Ranch data are close to the laboratory determinations of Geuze 

and Tan (1953) of 2.63X10 12 Ns/m2 .

Also, all the "back-calculated viscosities are based on the assumption 

that the creeping flow is continuous over the period of observation. This is 

usually not true, as landslide movement is episodic and most movement occurs 

during especially wet periods when the piezometric level is high. If, for 

example, most slide movement occurs over periods of less than 1 day, the 

velocities would be higher and the viscosities lower by two to three orders of 

magnitude. Such movements are likely to be ignored unless continuous 

monitoring systems are installed.
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